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The spreading of a drop of viscous fluid on a horizontal surface by capillarity has 
been studied by a number of authors. Different hypotheses have been advanced for 
the crucial questions of the contact angle at the moving rim of the drop. It is argued 
that there is one model that agrees with experiments and is economical in its 
hypotheses. On the basis of this model, the spreading rate is calculated for small 
static contact angles and for complete wetting (zero contact angle). The rates are also 
found when the spreading depends partially or dominantly on gravity. 

1. The spreading of drops by capillarity 
Consider a compact volume of clean fluid placed on a smooth rigid horizontal plane 

surface. We can also suppose, for simplicity, that the initial shape of the rim of the 
drop is circular and that it remains circular as the fluid spreads. An outward motion 
of the rim is produced by gravity, which acting alone would cause the fluid to spread 
out into a thin horizontal film, but for much of this paper the effect of gravity will 
be ignored. The other cause of the spreading of the fluid is capillarity. In equilibrium, 
capillarity causes the free surface to take the shape of a surface of constant 
curvature, but there is an additional quantity needed to fix the equilibrium shape, 
the static contact angle. If we suppose that the initial shape of the free surface is that 
of a spherical cap, with the slope at  the rim greater than the static contact angle, then 
the drop will spread until the radius of the rim reaches a certain size, when the slope 
there will have its static value. If the static contact angle is zero, then the spreading 
will continue indefinitely. 

It is clear that the process of spreading is completely described by finding the 
radius of the circular rim of the drop as a function of time. The relevant parameters 
defining the drop are its volume and the static contact angle, and we expect the rate 
of spreading to depend on the viscosity and surface tension of the fluid. If we assume 
that the slope of the free surface is small compared with unity at all times, the 
lubrication approximation can be applied, and the problem reduces to that of solving 
a nonlinear equation for the height of the drop as a function of the distance from the 
centre of the drop and of the time. The use of the lubrication approximation restricts 
consideration to systems in which the contact angle is small, although one of the 
proposed assumptions relating to the contact angle can be applied to angles of 
arbitrary size. Although this account of the formulation of the problem appears 
straightforward, it hides two difficulties. It is well-known that the usual no-slip 
boundary condition applied to a fluid in contact with a rigid surface is not acceptable 
for the vicinity of a moving contact line, since it leads to a force singularity (Dussan 
V. & Davis 1974). The relaxation of the boundary condition to allow for slip near the 
contact line (which is the preferred way in which this difficulty is overcome) 
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introduces another parameter. Different prescriptions for the new form of the 
boundary condition have been suggested, but most involve a slip length as the new 
parameter. The second difficulty concerns the value of the contact angle under 
dynamic conditions. In order to provide the necessary conditions for the equation for 
the height of the drop it is necessary to prescribe the contact angle in the non- 
equilibrium state, and not only its static value. There are two possible assumptions, 
both of which have their supporters. One, used first by Greenspan (1978), is that the 
contact angle when the contact line is moving is some function of the velocity of the 
contact line. The spreading rate of a drop under various choices for this functional 
relation have been obtained recently by Ehrhard & Davis (1991). The second 
assumption, used for example by Hocking (1981), is that the contact angle a t  the rim 
of the drop remains equal to its static value even when the contact line is moving. 
The letters D (dynamic) and S (static) will be used in what follows when comparing 
results obtained using these alternative assumptions. It is immediately apparent 
that model D introduces an additional parameter with the dimensions of a velocity, 
as well as the functional relationship between velocity and angle, whereas model S 
requires no additional information. 

The reason for the choice of model D stems from measurements of contact angles 
at  moving contact lines (see, for example, Hoffman 1975), which clearly demonstrate 
the variation of angle with velocity. It might be thought that these experiments 
suffice to rule out model S immediately. However, as pointed out by Hanson & Toong 
(1971), it is important to recognize that most of the measurements of contact angles 
are not direct but are inferred from secondary observations, and that the slope 
changes rapidly in the vicinity of the contact line. Thus it is possible to make a 
distinction between the apparent contact angle, which is the angle to which the 
measurements relate, and the real contact angle at  the contact line itself. It is not 
surprising that these two angles should differ when the contact line is moving ; the 
relaxation of the no-slip condition to remove the force singularity results in finite but 
large stresses near the contact line. These in turn produce rapid changes in curvature 
since they must be balanced by the capillary pressure and hence a rapid change in 
slope near the contact line is to be expected. Nevertheless, the proponents of model 
D have ignored the distinction between real and apparent contact angles, and have 
taken the experimentally determined values of the apparent contact angle as 
defining the real contact angle. In this paper, the spreading problem is discussed on 
the basis of the two models, and arguments are given in favour of model S, which 
postulates that the contact angle a t  the edge of the drop is equal to the static contact 
angle even when the edge is moving. The modifications to the spreading rate required 
when there is complete wetting are found, and the effect of gravity on the spreading 
rate is also described briefly. 

2. Formulation of the problem 
The application of the lubrication approximation to the motion of a thin layer of 

fluid or a drop results in an equation that has been written down many times. The 
derivation given in Hocking (1983) is followed here, except that in that paper the 
small parameter defining the aspect ratio of the drop was chosen to be the static 
contact angle, but here it is defined independently. The reason for this change is so 
that the formulation holds for both zero and non-zero contact angles. 

We consider an axisymmetric drop of liquid on a horizontal plane. We wish to 
determine the radius of the drop as a function of the time as capillarity and gravity 
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cause it to spread over the plane, and also to find the shape of the top surface of the 
drop as a function of distance from the centre of the drop and of the time. The partial 
differential equation for the height of the drop when the lubrication approximation 
is used can be written in the form 

Distance from the centre of the drop is denoted by a,x, where a, is the horizontal 
lengthscale. The vertical lengthscale is a,€, where E is the slope parameter or 
aspect ratio of the drop, and the height of the drop at the location x is denoted by 
a,eh(x, t ) .  For the lubrication approximation to hold, E must be small, and then (2.1) 
is the leading-order term in the expansion of the solution in powers of E ,  provided the 
inertial terms in the Navier-Stokes equations are also small, that is, provided 
8Re 4 1,  where Re is the Reynolds number. Because the slope of the top surface of 
the drop must be of order E ,  it follows that the contact angle must also be of order B .  

The lengthscale and the aspect ratio are related to the volume V of the drop by 

27cai~ = V .  (2.2) 

The dimensional time is equal to (3,ua0/as3) t ,  where ,u is the viscosity of the fluid and 
a is the surface tension. The non-dimensional Bond number B expresses the ratio of 
gravitational and capillary forces and is defined by 

B = pga:/fl, (2.3) 

where p is the density of the fluid and g is gravity. The form of the equation given 
by (2.1) is based on the assumption of a slip boundary condition of the form 

u-Xau/az=o on Z = O ,  (2.4) 

where u is the radial velocity of the fluid at  the plane surface z = 0, and the non- 
dimensional parameter A is defined in terms of the slip length x and the height of the 
drop by 

The physical reason lying behind a condition like (2.4) is probably connected with 
roughness of the solid surface, either on a macroscopic or molecular level. There is no 
sound theoretical basis for the condition, other than the pragmatic one that it does 
enable the contact-line singularity to be removed. Variants of (2.4) have been 
proposed in problems of sliding and spreading, but they yield qualitatively similar 
results (see Dussan V. 1976). Since the object of this paper is to explore the 
differences arising from the contact-angle description it is sufficient to use (2.4) for 
both models. 

x = +,€A. (2.5) 

The symmetry about the origin requires that 

ah/az = a y a ~ 3  = o at x = 0. (2.6) 

Suppose that the rim of the drop is at x = a(t) ,  so that the drop has a radius a(t)  at 
time t .  Then the vanishing of the height at the rim and the constancy of the fluid 
volume impose the conditions 

h(a, t )  = 0, xh(x, t )  dz = 1. 

The final boundary condition relates to the slope of the surface at the rim of the drop, 
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which must be of order E .  In  model S, the contact angle has a constant value EU,, so 
that the boundary condition has the form 

-ah/& = CL, at  x = a(t). (2.8s) 

In model D, the static contact angle is also equal to at,, but the contact angle when 
the contact line is moving is assumed to  be velocity dependent. In  a form that allows 
some flexibility, we can suppose that the excess of the contact angle over its static 
value is proportional to  some power of the velocity of the contact line. Thus, in non- 
dimensional form the boundary condition has the form 

-ah/az = ud = a,+Kcim a t  x = a( t ) ,  (2.8D) 

where a = da/dt and K and m are positive constants. It should be made clear that  
there is no direct evidence for this assumption about the contact angle ; other forms 
of the functional dependence on velocity could be postulated with equal validity. 

We wish to  find the solution of (2.1), subject to the conditions (2.6), (2.7) and either 
(2.8s) or (2.8D). The small parameter E does not appear in this formulation of the 
problem, which is the leading-order term in an expansion in powers of E .  The solution 
will be found by expansions in terms of the remaining small parameter A, although 
the precise forms of these expansions have still to be determined. The other 
parameter in (2.1) represents the effect of gravity on the spreading of the drop. In  
most of what follows in this paper, we concentrate on capillary-induced spreading 
and set the parameter B equal to zero. Then the equilibrium radius a, and drop 
profile h, are given by 

a,  = (f3/aS)i, h,  = a,(a~-z2)/2a,.  (2.9) 
This steady state will be attained as t -+ 00. Of course, if a, = 0 there is no equilibrium 
configuration and the drop will spread indefinitely. Since the main interest is in the 
spreading of the drop after any initial transient adjustment of the drop shape has 
been accomplished, the precise form of the initial state is not important. We can 
suppose that, at t = 0, 

where a, < a,. An analysis of the initial motion for a variety of slip boundary 
conditions and contact-angle laws has been given by Haley & Miksis (1991). 

The goal of the solution of the problem so formulated is the value of a(t). When this 
has been determined, it is also possible to  find the apparent contact angle a,. As 
already explained, this is the contact angle measured outside the vicinity of the 
contact line, where the slope of the drop changes markedly. The quantity a, can be 
found as a function of a and hence of t when a(t) has been determined. 

An important parameter in problems containing moving contact lines is the 
capillary number Ca, which measures the relative importance of viscous and 
capillary forces and is given by Ca = ,uU/cr. The velocity U which appears in this 
definition is, in the present case, proportional to a, so that, with the chosen non- 
dimensionalization, 

Hence, the contact-angle law (2.8D) can be written in terms of Ca instead of a, and 
when the apparent contact angle a, is determined, it too can be expressed as a 
function of Ca. An important consequence of the definition (2.11) of the capillary 
number is that Ca is not an input variable, but has to be determined from the 
solution. This is in contrast to other contact-line problems, such as the forced motion 
of a meniscus along a tube, when the capillary number can be prescribed. 

a(0) = a,, h ( z , O )  = 4 ( 4 - z 2 ) / a : ,  (2.10) 

Ca = g3a. (2.11) 
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3. Spreading rates 
The quasi-static form for the drop height when gravity is unimportant can be 

found from (2.1) with B = 0 and the time-dependent term omitted. Since capillarity 
is the only remaining influence, the surface of the drop has constant curvature, which 
under the lubrication approximation means that it is a paraboloid. Applying the 
volume constraint (2.7), we find that, when the radius of the drop is a, the height h 
of the drop is given by 

which is valid provided the time-dependent term in (2.1) is relatively small. This 
quasi-static solution is taken as the leading-order term in an expansion in terms of 
the spreading rate ; the precise definition of the expansion parameter can be made a 
posteriori for both of the contact-angle models (2.85) and (2.8D). The apparent 
contact angle a, is given by the slope at  x = a of this leading-order solution so that 

h = 4(a2-x2)/a4, (3-1) 

a, = 8/a3. (3.2) 

Experiments reported by Tanner (1979) on the spreading of small volumes of fluid 
indicate that the spreading rate is proportional to the cube of the (apparent) contact 
angle. Of course, this relationship cannot hold when the drop is close to its 
equilibrium radius. A consequence of Tanner’s experimental results is that the radius 
of the drop at  time t is given by 

a = cth, 

where c is some constant, and this law has also been verified experimentally by 
Cazabet & Cohen Stuart (1986) and by Chen (1988). Any transient initial adjustment 
of the drop would not be covered by this theory, nor would it apply to drops so large 
that inertial effects destroy the validity of the lubrication approximation. 

Theoretical predictions of the spreading rate must be tested against these 
experimental results. The leading-order solution (3.1) does not by itself determine the 
spreading rate, and the solution proceeds in different ways, depending on whether 
(2.85) or (2.8D) is being used. 

The solution with (2.85) has been given by Hocking (1983). An inner region of 
width h is needed near the contact line, and this has to be matched with the outer 
solution through an intermediate region of width l/(ln Al. The equation for d as given 
by Hocking (1983), when adjusted to allow for the change in definition of the aspect 
ratio has the form 

(3.3) 

3aln * (Ei) - = ( ( y - a : .  - (3.45) 

From this equation we see that d is proportional to the small parameter l/llnhl, 
which is the appropriate expansion parameter in this case. We also see that, provided 
a + a,, a = (ct)h, where c = v/ln (aaJ2eA). Because of the presence of the drop 
radius a in the definition of c ,  it is not a constant but varies slowly with In t .  A small 
adjustment to (3.3) is therefore needed, but is of only minor significance. When the 
radius is close to its equilibrium value the algebraic growth is replaced by an 
exponential approach of a to a,. The apparent contact angle a, is defined by (3.2), 
and its values when the drop is far from, and close to, equilibrium have the respective 
forms 

(3.5) a, = clas for a+a,, a , = a , + c , a  for a,--a+a,, . I  

where c1 and c2 are known constants, depending on the parameters a, and A. 
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The spreading rate under one form of the alternative assumption (2 .8D) was 
obtained by Greenspan (1978), and for a variety of slip laws and for different values 
of the power in the definition of ad in (2.8D) by Haley & Miksis (1991) and Ehrhard 
& Davis (1991). As shown in these papers, the direct application of (2 .8D)  to the 
leading-order expression (3.1) for h determines the spreading rate as a function of 
radius in the form 

Ka" = 8/a3 - a,, (3.4D) 

and the expansion parameter in this case is K-llrn. If m = g, a is proportional to tk 
when a <aoo, so that (3.3) holds, but the approach to the equilibrium state is 
proportional to t-i. In this model, and to leading order, the apparent contact angle 
a, is equal to the assumed contact angle ad. The spreading rate is proportional to K-3 
when m = g. Although this result is obtained without reference to the difficulty 
associated with the force singularity a t  the contact line, a slip boundary condition is 
needed when the next term in the expansion is obtained. This correction requires an 
analysis parallel to that described when ( 2 . 8 s )  was used, and when this is done we 
find that the combined expression for the spreading rate when m = f has the form 

(a, + K ~ E ; ) ~  + 36 In ( a a , / 2 e ~ )  = = crt. (3.6) 

When a Q a,, this gives the spreading rate in the form 

u[K3 + 3 In (aaS/2eh)] = ( 8 / ~ ~ ) ~ ,  (3.7) 

provided K3 9 Iln A( .  This restriction means that the leading-order solution is only 
valid provided slip is present, and the slip coefficient, which is small compared to 
unity, must not be too small. The form for d given in (3.6) holds also when K3 and 
(In A1 are of the same order. The apparent contact angle can be found from (3.6) : a, 
is proportional to a; when a < a,, and, when a,-a is small, 

a, = a,+~U++ciln ( a a , / 2 e ~ ) / a i .  (3.8) 

Since the spreading rate tends to zero as a approaches a,, the apparent contact angle 
varies linearly with the velocity for large times, and not with the one-third power as 
(3.4D) predicts. 

From these results we see that model D can give spreading at  the observed rate 
only when m is equal to f and when slip is present, with A sufficiently large so that 
the condition K3 9 Iln A1 is satisfied. Model S also predicts the same form for the 
spreading rate, but the constant of proportionality depends only on the slip length 
A and does not involve any other material constant. Model D predicts an algebraic 
approach to equilibrium when slip is completely neglected, but when it is included, 
the approach is exponential, as in model S. it follows from these results that there is 
nothing to be gained by postulating that the dynamic contact angle ad is given by 
(2.8D). There is no direct evidence for the validity of this form, and it has been shown 
that the indirect evidence is consistent with the simpler assumption (2 .8S) ,  that is, 
that the real contact angle is constant. The spreading rate for the drop at  any radius 
and the dynamic variation of the apparent contact angle can both be deduced from 
this single hypothesis. 

A different conclusion is drawn by Ehrhard & Davis (1991). They accept as a 
postulate the dynamic contact angle as given by a form like that in (2 .8D)  and 
determine the spreading rate for various values of the two constants K and m (in the 
present notation). They include the special case of the constant contact angle, as 
discussed in Hocking (1983), which is given by setting K = 0 in (2 .8D) ,  and state that 
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Hocking’s result holds when the capillary number that they define is very large, 
whereas their results hold when it is small. The effect of the differing assumptions is 
made clear by the composite expression (3.6). As explained in $2, in spreading 
problems the capillary number is not the most convenient quantity to use, since it 
is a variable of the motion. It is better to compare the two parameters K and Iln Al. 
From (3.6), which incorporates both the effect of the slip region and any assumed 
dynamic behaviour of the contact angle, we see that model D is only valid when 
K3 9 Iln Al, whereas model S and model D give equal spreading rates, to  leading 
order, when K3 < Jlnhl. In  the absence of any evidence to support the hypothesis of 
model D, there seems to be no reason for K to have any other value than K = 0, in 
which case model D reduces to model S. 

4. Small contact angles 
The procedure described in Hocking (1983) that led to the equation (3.4s) for the 

spreading rate is valid when /3 9 1, where /3 = a,/ai. When a is close to am, /3 is 
proportional to Iln Ali, so the validity of the procedure is assured, provided a, is not 
zero. For general values of a, ci is proportional to l/llnAl, so that the solution is valid 
only when a: 9 l/llnAl. When this condition does not hold, that is, for sufficiently 
small values of a,, and, in particular, when a, = 0, the solution given in Hocking 
(1983) must be modified. The most significant change is in the solution close to the 
contact line. 

In  this inner region, we write h = AH([), where A[ = a--2, and, to leading order, 
the equation (2.1) for h becomes 

d3H/dc3 = -c i /H(H+ l), (4.1) 

with the conditions H = 0, dH/d[ = a, at [ = 0. When /3 %- 1, the solution can be 
expanded in the form H = a , [ + d H ,  +. . . , with H ,  determined by repeated 
integration, as shown in Hocking (1983). For other values of /3, the nonlinear 
equation (4.1) must be solved. If we introduce a new variable 7 = &[, the equation 
for H becomes 

1 -=- d3H 
dyS H(H + 1) ’ 

with H = 0, W/dq  = /3 at 7 = 0. In order to match with an outer solution, the 
solution for which H - q2 must be excluded, and the asymptotic form for H can be 
written as 

H - 7{3 In 7 + q(P)P, (4.3) 

where q(p) must be determined numerically. This asymptotic value has the required 
form for the inner condition on the solution in the intermediate region, where a-x 
is of order l/llnAl, and the outer condition is obtained by matching with the outer 
solution, where a-x is of order one. Repeating the procedure described in Hocking 
(1983), we find that 

When /3 9 1, the value of q(/3) can be found from the expansion of H in powers of ci 
as in Hocking (1983), which in the present notation gives 

u[31n (a/2eh)+lnci+q(/3)] = (4.4) 

q(/3) -p3+31n/3 as @+a, 

and then (4.4) is identical to (3.45). 

(4.5) 
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The value of q(@) was determined numerically by solving (4.2). If we change the 
variable y to y, by writing y = exp (y), the range of y is from - co to + CO, and if we 
also write H(y) = yS(y), (4.2) becomes 

1 __-- d3S dS - - - 
dy3 dy S(S+eey)’ 

with the boundary condition 

s - (3y+q)t  as y+ co, (4.7) 

S-/3-yey/2/3 as Y-+-co .  (4.8) 

where q(/3) is a constant that has to be determined. The other boundary condition 
when /3 + 0 is that 

By inverting the operator on the left-hand side of (4.6), we can write the equation in 
the form S(y) = 9 [ S ( y ) ] ,  where the functional 9 is given by 

with P(Y) = 2S(Y) {S(Y) + exp ( -  Y)}. (4.10) 

The value of S(y) and hence of q was found from the iterative procedure 

(4.11) 

where r is a relaxation parameter and the iteration commenced from a guessed value 
of So with the required behaviour a t  infinity. A value of 0.8 for r was found to be 
satisfactory for all /3. The values of S were determined over a finite range from - Y 
to + Y ,  and the values of the integrals in (4.9) from - 00 to - Y and from Y to 00 were 
estimated by using the asymptotic forms of S as y + f a. 

When /3 = 0, which means that the static contact angle a, is zero, the asymptotic 
form for H near the contact line, with H and dH/dq zero there, can readily be found 
from (4.2) to be given by 

H - ($yg, (4.12) 

and the corresponding asymptotic form for S ,  replacing (4.8) when /3 = 0, is given by 

s - (g)iexp(+y) as Y+-CO.  (4.13) 

With this change in the asymptotic value of S ,  and the consequent adjustment to the 
evaluation of the first integral in (4.9) from - 00 to - Y ,  the same procedure as that 
used for non-zero /3 could be applied. By taking a succession of values for Y from 10 
to 20, and by choosing steplengths equal to 0.4, 0.2 and 0.1 in the evaluation of the 
integrals it was possible to determine the values of q(/3) to the accuracy shown in 
table 1. The value of q for /3 = 3 is close to the asymptotic value of 30.30 given by 
(4.5). For small p, q(P) is approximately equal to 0.74+p2. 

Since q(/3) is now known, (4.4) can be used to determine & for all values of a and a,. 
As already explained, when a, =+ 0 the values of /3 will be large, except perhaps in the 
initial stages of the spreading, and (4.4) is then equivalent to (3.45), with the radius 
of the drop proportional to tm until the radius is close to its equilibrium value, when 
the approach is exponential. When a, = 0, we can write (4.4) in the form 

(4.14) 
512 
3a6 

a3ci{ln(a3d)+c} = -, c = -4.34-3lnh. 
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B 4(B) 
0 0.74 
0.1 0.75 
0.2 0.78 
0.4 0.92 
0.6 1.21 
0.8 1.68 
1 .o 2.37 
2.0 10.46 
3.0 30.44 

TABLE 1.  Determination of the value of q(B) 

If we now write b = +*, the equation becomes 

64 
d(ln6+c) = -. 

3bt 
(4.15) 

When Ilndl 4 c, the solution of this equation has the form 

b = (160t/3c)f, (4.16) 

so that a is proportional to th as expected. There is, of course, no finite equilibrium 
solution when the static contact angle is zero, and a -+ 00. As can be seen from (4.15)) 
when b is large, lnd must be approximately equal to -c, from which it follows that 

b = e-9, a = 4.19Aid. (4.17) 

The one-tenth power holds provided a << A-i, so the change to the more rapid growth 
only occurs when the radius of the drop has become so large that the height of the 
drop at its centre is of the same order as the slip length. 

5. Spreading by gravity 
When the Bond number B is not zero, spreading is produced by a combination of 

gravity and capillarity. It was shown in Hocking (1983) that, when & 4 1, the 
spreading rate is only slightly different from that induced by capillarity alone. When 
1 4 ul$ 4 Ilnhl, (3.45) becomes 

(5.1) 

and the radius is proportional to d. When a& % Iln Al, the radius of the drop is 
proportional to ti and the spreading is controlled by gravity alone, with capillarity 
an important factor in determining the profile of the drop near the contact line but 
not having a significant influence on the spreading rate, except when the drop is 
approaching its equilibrium radius. This spreading rate is in agreement with the 
experimental results of Cazabet & Cohen Stuart (1986). When a, = 0, the growth of 
the radius of the drop is, to leading order, given by a cc ti without limit. 

3ci ln (aa , /2e~)  = (&/a2)3- a:, 

6. Conclusions 
The results presented in this paper have shown that, for spreading problems, the 

dual assumptions of some form of slip at the contact line and a constant static 
contact angle provide an acceptable basis for the conditions to be imposed at the 
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contact line. It has been possible to determine on this basis both the spreading rate 
and the dynamic variation of the apparent contact angle. The spreading of a drop has 
been successfully treated in this paper, even when the static contact angle is zero, 
which allows complete wetting. It had been thought that, in this case, there would 
have to be a precursor film extending to infinity ahead of the bulk of the drop. The 
model presented here has shown that there is still a definite finite edge to the drop 
during the spreading process. There is a region ahead of the bulk of the drop, of width 
proportional to l/lln Al, within which the slope of the drop changes from the apparent 
contact angle to zero at the contact line itself. 

Although the particular examples of spreading have been within the lubrication 
approximation, a similar formulation can be successfully applied to spreading 
problems when the slope of the drop is not small (Hocking & Rivers 1982 ; Cox 1986). 
Another example of a moving contact line is at the front of a sheet of viscous fluid 
moving down a plane. An analysis of this problem has been presented by Troian 
et al. (1989) who use the lubrication approximation and avoid the difficulties 
associated with a moving contact line and with the definition of the contact angle by 
supposing the existence of a thin precursor film ahead of the front. The thickness of 
this film is an unassigned parameter, and the maximum height of the fluid sheet is 
shown to depend weakly on this parameter. A similar problem is that  of the motion 
of a ridge of fluid and this has been solved by Hocking & Miksis (1991) on the 
assumptions of the present paper, that  is, a slip boundary condition, a constant static 
contact angle and the lubrication approximation. The solution they found is a weak 
function of the slip length. 

In  a recent paper, Goodwin & Homsy (1991) have argued against the use of 
lubrication theory in the treatment of the flow near the front of a gravity-driven fluid 
sheet. The basis for their criticism is that, while some of the singularities associated 
with the presence of the moving contact line can be removed by a slip boundary 
condition, the solution based on lubrication theory is still singular because the rate 
of change of curvature of the free surface is unbounded a t  the contact line. They 
relate this perceived difficulty to the use of the lubrication approximation ; in order 
to  avoid it they use instead the Stokes equations to describe the motion near the 
contact line. Of course, lubrication theory is only valid when the slope of the free 
surface is small, and this implies that the contact angle must also be small. The 
criticism made of the use of lubrication theory, however, is based on the unbounded 
rate of change of curvature of the free surface. In  fact, the curvature itself is 
unbounded when lubrication theory is used, but this is no reason for the theory to 
be discredited. Examples of fluid motions in which the curvature of a fluid surface 
has a singularity have been given by Buckmaster (1972). Moreover, the solution 
given by Goodwin & Homsy (1991) is for the outer problem only, and hence includes 
a singularity at the contact line, which they do not remove by including slip into 
their model. Consequently, their solution cannot demonstrate the dependence on the 
conditions applied at the contact line which is a feature of the solutions of Troain 
et al. (1989) and of Hocking & Miksis (1991). Because they avoid the contact line itself 
by a suitable choice of collocation points, it appears that their solution must be grid- 
dependent. In  their treatment of the spreading of an initially spherical drop, Hocking 
& Rivers (1982) solved the Stokes equations, not the lubrication approximation, 
both in the outer region and in the vicinity of the contact line as well. Their solution 
for the spreading rate was dependent on the choice of the slip parameter, and so 
demonstrated that the rate could not be determined without an adequate model for 
the slip region in the vicinity of the contact line. 
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No mention has been made here of the influence of long-range molecular forces on 
the spreading of a drop. Such effects have been thoroughly discussed by de Gennes 
(1985) and Joanny (1986), but their papers show that there are some difficulties in 
the definition of contact angles when such forces are included. I hope to discuss this 
aspect of the spreading problem in a subsequent paper. 

This paper has been written as a result of a visit to Northwestern University 
supported by a NATO Grant for International Collaboration in Research. 
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